CV

Basics

Name Saroj Khadka
Label Graduate Student Researcher
Email khadka@pitt.edu
Url https://sarojkhadka.com/
Summary Biomedical Science PhD candidate with strong research experience in bacterial virulence mechanisms, host-pathogen interactions, and microbial gene regulation. Skilled in molecular biology and microbiological techniques, mentoring and science communication. Motivated to build an independent career in biomedical research.

Work

  • 2024.08 - Present
    Graduate Student Researcher
    Department of Medicine/Division of Infectious Diseases, University of Pittsburgh
    Teaching at Palmer Physical Laboratory (now 302 Frist Campus Center). While not a professor at Princeton, I associated with the physics professors and continued to give lectures on campus.

Volunteer

  • 2014.04 - 2015.07

    Zurich, Switzerland

    Lead Organizer
    People's Climate March
    Lead organizer for the New York City branch of the People's Climate March, the largest climate march in history.
    • Awarded 'Climate Hero' award by Greenpeace for my efforts organizing the march.
    • Men of the year 2014 by Time magazine

Education

  • 2021.08 - 2026.07

    Pennsylvania, USA

    PhD
    University of Pittsburgh
    Microbiology and Immunology
    • Academic Advisor: Dr. Laura A. Mike
  • 2015.08 - 2017.07

    Kathmandu, Nepal

    MS
    Tribhuvan University
    Medical Microbiology
    • Thesis Supervisor: Dr. Megharaj Banjara
  • 2011.12 - 2014.11

    Kathmandu, Nepal

    BS
    Tribhuvan University
    Microbiology

Awards

  • 1921.11.01
    Predoctoral Fellowship
    American Heart Association
    AHA Predoctoral Fellowship is awarded to students in predoctoral or clinical degree who intend to work as a scientist, physician or related careers aimed at improving global health.'

Certificates

Quantum Teleportation
Stanford University 2018-01-01
Quantum Communication
Stanford University 2018-01-01
Quantum Cryptography
Stanford University 2018-01-01
Quantum Information
Stanford University 2018-01-01
Quantum Computing
Stanford University 2018-01-01
Machine Learning
Stanford University 2018-01-01

Publications

  • 1916.03.20
    Die Grundlage der allgemeinen Relativitätstheorie
    Annalen der Physik
    The publication of the theory of general relativity made him internationally famous. He was professor of physics at the universities of Zurich (1909–1911) and Prague (1911–1912), before he returned to ETH Zurich (1912–1914).
  • 1905.06.30
    Zur Elektrody/namik bewegter Körper
    Annalen der Physik
    It concerned an interpretation of the Michelson–Morley experiment and the properties of light and time. Special relativity incorporates the principle that the speed of light is the same for all inertial observers regardless of the state of motion of the source.
  • 1905.03.18
    Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt
    Annalen der Physik
    In the second paper, he applied the quantum theory to light to explain the photoelectric effect. In particular, he used the idea of light quanta (photons) to explain experimental results, but stressed the importance of the experimental results. The importance of his work on the photoelectric effect earned him the Nobel Prize in Physics in 1921.

Skills

Physics
Quantum Mechanics
Quantum Computing
Quantum Information
Quantum Cryptography
Quantum Communication
Quantum Teleportation

Languages

German
Native speaker
English
Fluent

Interests

Physics
Quantum Mechanics
Quantum Computing
Quantum Information
Quantum Cryptography
Quantum Communication
Quantum Teleportation

References

Professor John Doe
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam condimentum, diam quis convallis euismod, arcu mi ullamcorper lorem, a vestibulum nunc magna at sem. Sed in risus ac felis varius blandit. D
Professor John Doe
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam condimentum, diam quis convallis euismod, arcu mi ullamcorper lorem, a vestibulum nunc magna at sem. Sed in risus ac felis varius blandit. D

Projects

  • 2018.01 - 2018.01
    Quantum Computing
    Quantum computing is the use of quantum-mechanical phenomena such as superposition and entanglement to perform computation. Computers that perform quantum computations are known as quantum computers.
    • Quantum Teleportation
    • Quantum Cryptography